Moment tensor analysis is a topic that carries a decent level of uncertainty and confusion for many people. So I’m going to lay it out as simply as I can. For this post, I’m not going to go into too many details on how moment tensors are actually calculated. But, I’m going to summarise the things I think are most important for geotechnical engineers to know for interpreting moment tensor results. OK, so, what is a moment tensor? A moment tensor is a representation of the source of a seismic event. The stress tensor and the moment tensor are very similar ideas. Much as a stress tensor describes the state of stress at a particular point, a moment tensor describes the deformation at the source location that generates seismic waves. You can see the similarity between the stress and moment tensors in the figure below. The moment tensor describes the deformation at the source based on generalised force couples, arranged in a 3 x 3 matrix. Although, the matrix is symmetric so there are only six independent elements (i.e. M12 = M21). The diagonal elements (e.g. M11) are called linear vector dipoles. These are equivalent to the normal stresses in a stress tensor. The off-diagonal elements, are moments defined by force couples (moments and force couples discussed in previous blog post). Producing a moment tensor of a seismic event requires the Green’s function. This function computes the ground displacement recorded by the seismic sensor based on a known moment tensor (the forwards problem). A moment tensor inversion is when the inverse Green’s function is used to find the source moment tensor based on sensor data. Sure… but what’s with the beach balls? It’s pretty hard to interpret a 3 x 3 matrix of numbers, so moment tensors are usually displayed as beach balls, either 2D or 3D. I will mostly discuss the 3D case; the 2D diagram is just a stereonet projection of the 3D beach ball. The construction of a beach ball diagram is very simple. For each point on the surface of a sphere, the moment tensor describes the magnitude and direction of the first motion. If the direction of motion is inwards, towards the source, the surface is coloured white (red arrows). If the direction of motion is outwards, away from the source, the surface is coloured black (blue arrows). Where there is a border between black and white on the beach ball surface, the direction of motion is tangential (purple arrows). The direction of motion across the border is white-to-black. The figure below shows the first ground motion on the beach ball surface, split into radial and tangential components. The lengths of the radial and tangential arrows are proportional to the strength of the P and S waves respectively. P-waves generally emanate strongest from the middle of the white and black regions. S-waves emanate strongest from the black-white borders. The location of the pressure and tension axes can be confusing. If you look at the S-waves diagram, the tension axis is in the compressional quadrant. However, it does make more sense from the P-waves diagram. The black/white convention can also be counter-intuitive for some. ‘Black’ holes pull things inwards, the sun radiates ‘white’ light outwards, but the beach ball diagram is the opposite of that. I’m sorry I don’t know why this is the convention. Perhaps seismologists are Star Wars fans… Vader wants Luke to come to the dark side, and so this is the movement direction that he is tempted towards… that’s all I got ?. Right, but what can I learn about the event mechanism? Even with the beach ball diagram, it can still be hard to interpret the geological or physical mechanism of the event. This is why the moment tensor is often decomposed into its constituent elementary source mechanisms. To decompose the moment tensor, the matrix is rotated to zero the off-diagonal elements. This is just like finding the principal axes of a stress tensor, by zeroing the shear elements and leaving the normal stresses. So, every moment tensor can be expressed as three linear vector dipoles (orthogonal), rotated to a particular orientation. These three dipoles are referred to as the P (pressure), B (or N, neutral or null) and T (tension) principal axes. Isotropic source In combination, the three dipoles either result in an overall expansion or a contraction of the source volume. If the source is explosive, the largest dipole direction is the T axis and the smallest dipole is the P axis. These are reversed for an implosive source. Although, for a pure isotropic source the axis orientations have no meaning. The isotropic component is the portion of the tensor that represents a uniform volume change. Only P-waves radiate from a purely isotropic source. A positive isotropic component is an expansion/explosion. This can be a confined blast or possibly rock bulking. A negative isotropic component is a contraction/implosion. Any pillar burst, buckling or rock ejecting into a void will likely appear as an implosion, given the path of the recorded waves around the void, all first motions will be towards the source. Deviatoric source When the isotropic component is removed from the moment tensor, the remainder is the deviatoric component. The deviatoric tensor results in displacement that has zero net volume change, i.e. equal movement in, equal movement out. The underlying geological process to the deviatoric component is a general dislocation of a fault. The general dislocation can be a mix of shear and normal dislocation (although still with no net volume change). To better interpret the relative proportions of shear and normal displacement, the deviatoric component can be decomposed into the DC and CLVD elemental sources. Double Couple (DC) source The DC source is a pure shear dislocation. It is referred to as a double couple because there are two force couples and two (alternate) fault plane orientations that equally model the expected displacement. This notion was discussed in a previous post. The shear direction on the